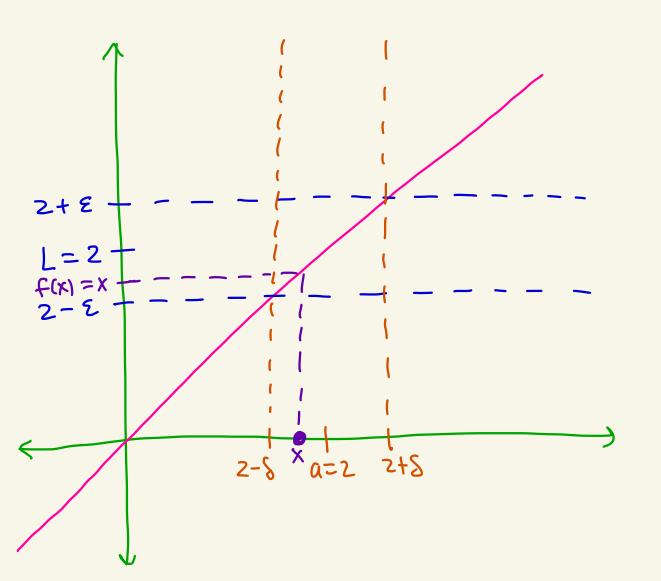
Math 4650 Homework 4 Solutions

Let & = 0.01.

We want 8>0 so that if 0<|x-2|<8then |x-2|<0.01.

Just take S = 0.01.



(i) (b) Let
$$\Sigma = 0.1$$
. We want $S > 0$ where if $0 < |x - 1| < S$

then $|\frac{1}{x} - 1| < 0.01$

Note that $|\frac{1}{x} - 1| = |\frac{1 - x}{x}| = \frac{|x - 1|}{|x|}$

If $S \le \frac{1}{2}$, then $0 < |x - 1| < S \le \frac{1}{2}$

will give $-\frac{1}{2} < x - 1 < \frac{1}{2}$ ($x \ne 1$)

or $\frac{1}{2} < x < \frac{3}{2}$ ($x \ne 1$).

Then, $\frac{2}{3} < \frac{1}{x} < 2$.

So, if $S \le \frac{1}{2}$ then $|\frac{1}{x} - 1| = \frac{|x - 1|}{|x|} < \frac{2|x - 1| < 2S}{|x| < 2}$

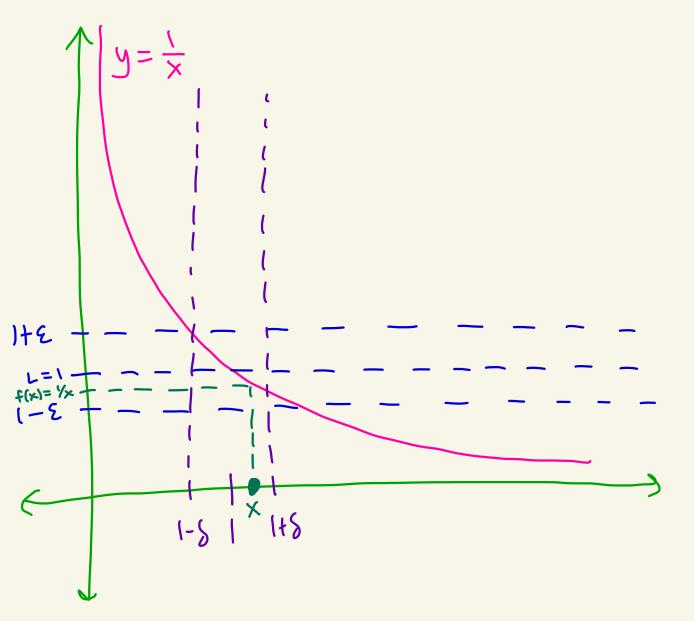
We need $2S \le 0.01$

Thus, pick $S \le \frac{0.01}{2} = 0.005$

Und $0 < |x - 1| < 0.005$

und $0 < |x - 1| < 0.005$

then $|\frac{1}{x} - 1| < 2S \le 0.01$



```
2 (a)
```

Let 270.

We want to find 870 where if 0<1x-(-1)1<8 then 1(2x+5)-31<8.

That is, find 870 where it 0<1x+11<8 then |2x+2|< &

|2x+2|=|2(x+1)|=|2|-|x+1|=2|x+1|Note that

Thus, if we set $S = \frac{\varepsilon}{2}$ then if 0<1x+11<8 we get that $|(2\times +5)-3|=|2\times +2|=2|\times +|1|<2\cdot\frac{2}{2}=2$

Therefore, lim (2x+5)=3 X -- (

We want to find S70 where if O<1x-11<8 then | 5x - 54 < 2.

Note that
$$\left| \frac{5x}{x+3} - \frac{5}{4} \right| = \left| \frac{20x - 5x - 15}{4x + 12} \right| = \left| \frac{15x - 15}{4x + 12} \right|$$

$$= \frac{115| \cdot |x - 1|}{|4x + 12|} = \frac{|5 \cdot |x - 1|}{|4x + 12|}$$
The second control is the second control in the sec

First let's assume S < 1 Then if IX-11< S < 1 we get -1< X-1<1. S_0 , 0 < x < 2. Thus, 0<4x<8. And, 12 < 4x+12 < 20 This gives $\frac{1}{20} < \frac{1}{4x+12} < \frac{1}{12}$ Then, 14x+12 = 1/4x+12 < 1/2 $\frac{1}{4x+12} > \frac{1}{20} > 0$

this is an arbitrary number that I picked to get a starting bound on & so we can bound in the above 14x+121 inequality

So, if
$$|x-1| < \delta \le 1$$
, then
$$\left| \frac{5x}{x+3} - \frac{5}{4} \right| = \frac{15 \cdot |x-1|}{14x+121} < \frac{15}{12} |x-1| < \frac{15}{12} \delta$$

Then we get BOTH S < I and S < 12 E.

$$\left| \frac{5 \times -5}{\times +3} - \frac{5}{4} \right| < \frac{15}{12} S < \frac{15}{12}, \frac{12}{15} E = E$$

So, if
$$0<|x-1|<8$$
, then $\left|\frac{5x}{x+3}-\frac{5}{4}\right|<8$.

Therefore, lim
$$\frac{S\times}{X+3} = \frac{5}{4}$$
.

(2)(c) Note that if we plug x=2into x^4 then we get $2^4 = 16$. So, let's try to show that lim x = 16.

We want to find 8>0 so that if O<1x-21<8 then 1x4-161< E.

Note that

$$|x^{4} - 16| = |x^{2} - 4| \cdot |x^{2} + 4|$$

$$= |x - 2| \cdot |x + 2| \cdot |x^{2} + 4|$$

let's put a this we

can control sturting bound on & to control with 8 these two

Let's start by assuming S < 1. Tacking bound that I picked Suppose OC[x-2]< S < 1.

Then, $|x|=|x-2+2| \leq |x-2|+|2| < S+2 < 1+2=3$. So, 1x1<3.

This gives

$$|x+2| \le |x|+|z| < 3+2=5$$

and.

 $|x^2+4| \leq |x^2|+|4|=|x|^2+4 < 3^2+4=13$

Thus, if
$$|x-2| < \delta \le 1$$
, then $|x^4-16| = |x-2| \cdot |x+2| \cdot |x^2+4|$ $< |x-2| \cdot |x+2| \cdot |x^2+4|$ $< |x-2| \cdot |x-2|$. Now set $S = \min\{1, \frac{\varepsilon}{65}\}$. So we get Both $S \le 1$ and $S \le \frac{\varepsilon}{65}$. Then if $0 < |x-2| < 8$ we have $|x^4-16| < 65 |x-2| < 65 S < 65 \cdot \frac{\varepsilon}{65} = 2$. Thus, if $0 < |x-2| < 8$, then $|x^4-16| < 2$. Therefore $\lim_{x \to 2} x^4 = 16$. Therefore $\lim_{x \to 2} x^4 = 16$.

(d) Note that plugging x=1 into x= gives 1=1. Let's show that $\lim_{x \to 1} \frac{1}{x^2} = 1$. We want to find 870 so that if U<1x-11<8 then | \(\frac{1}{x^2} - 1 \) < \(\xi \). He that $\left| \frac{1}{x^2} - 1 \right| = \left| \frac{1 - x^2}{x^2} \right| = \frac{|1 - x^2|}{|x^2|} = \frac{|x^2 - 1|}{|x^2|}$ Note that $=\frac{|\times_{s}|}{|\times-1|\cdot|\times+1|}$ we can't pick &< 1 Let S ≤ ½. 4 we need to stay Then if 1x-11<8<2 away from the asymptote at x = 0We get - 1/2 x-1= 2 If you pick 841 you'll $0 < \frac{1}{2} < x < \frac{3}{2}.$ run into issues right hele SE 72 Then, 3< x+1 < 5 stays away and 4 < x2 < \frac{9}{4}. from y-axis asymptote This will give |x+1|<\frac{5}{2}

Then, if
$$0 < |x-1| < S \le |$$
 we get

$$|\frac{1}{x^2} - 1| = |x-1| \cdot |x+1| \cdot \frac{1}{|x^2|} < |x-1| \cdot \frac{S}{2} \cdot Y$$

$$|\frac{1}{x^2} - 1| = |x-1| \cdot |x+1| \cdot \frac{1}{|x^2|} < |x-1| \cdot \frac{S}{2} \cdot Y$$

$$= |0 \cdot |x-1|.$$
Set $S = \min S = \frac{1}{2}, \frac{\varepsilon}{10}$.

Then $S \in \frac{1}{2}$ and $S \in \frac{\varepsilon}{10}$.

So, if $0 < |x-1| < S$, then
$$|\frac{1}{x^2} - 1| < |x-1| < S$$
, then
$$|\frac{1}{x^2} - 1| < |x-1| < S$$
, then $|\frac{\varepsilon}{10} - 1| < S$.

Thus, if $0 < |x-1| < S$, then $|\frac{1}{x^2} - 1| < S$.

Therefore, $|\sin x|^2 = 1$.

Note that if x=2 then x3-1=7. Let's show that lim (x3-1)=7. XTZ

Let 270.

We want to find S>D so that if 0 < |x-2| < S, then $|(x^3-1)-7| < \varepsilon$.

Note that

te that
$$|(x^3-1)-7|=|x^3-8|=|(x-2)(x^2+2x+4)|$$

$$=|x-2|\cdot|x^2+2x+4|$$

this starting bound on & is so we can bound the term (x2+2x+4)

Factor

$$x-2$$
 out $(x-2)$ $(x^{2}+2x+4)$
of $x^{3}-8$ $-(x^{3}-2x^{2})$
 $2x^{2}-8$
 $(2x-4x)$

-(5X-1X) 4x-8 -(4x-8)

Suppose S<1.

Then if 1x-21<8<1 we get that $|x| = |x-2+2| \le |x-2|+|2| < S+2 \le |+2=3$

which gives | x2+2x+4| < | x2 |+ |2x |+ |4| $= |x|^2 + |2||x| + 4$ triangle inequality $= |x|^2 + 2|x| + 4$ < 32+2.3+4 = 19 Thus, if 1x-21< S < 1, then $|(x^3-1)-7|=|x-2|\cdot|x^2+2x+4|$ < 19.1x-21 Set S=min {1, \frac{\xi}{19}}. Then SEI and SET9. So if 0<1x-21<8, then $|(x^3-1)-7|<|9\cdot|x-2|<|98<|9\cdot\frac{\varepsilon}{19}=\varepsilon$ since S < 1 from above Thus, if oc/x-2/<8, then /(x3-1)-7/<8. So, lim (x3-1) = 7

Let f:D→IR with a∈R where a is a

Suppose $\lim_{x \to a} f(x) = L_1$ and $\lim_{x \to a} f(x) = L_2$

We will show that L_= Lz.

Let 870.

5,70 where if Since lim f(x)=L, there exists If(x)-L, < 2/2

xeD and oclx-al<8, then S270 where if

Since lim f(x)=L2 there exists

If(x)-L2 < 2/2 XED and OCIX-al< 82 then

Let S=min \(\S_1, \S_2 \}.

Then, $8 \leq S$, and $S \leq S_2$.

Since a is a limit point of D there

exists RED where OclR-al<8.

Then, $0<|\hat{x}-\alpha|<\delta$, and $0<|\hat{x}-\alpha|<\delta_2$.

So, $|f(\hat{x})-L_1| < \frac{\varepsilon}{2}$ and $|f(\hat{x})-L_2| < \frac{\varepsilon}{2}$.

 $|L_1-L_2|=|L_1-f(\hat{x})+f(\hat{x})-L_2|$ Thus,

$$\frac{\xi \left| L_{1} - f(\widehat{x}) \right| + \left| f(\widehat{x}) - L_{2} \right|}{f(x) - L_{1}} \\
= \left| f(\widehat{x}) - L_{1} \right| + \left| f(\widehat{x}) - L_{2} \right|} \\
= \left| f(\widehat{x}) - L_{1} \right| + \left| f(\widehat{x}) - L_{2} \right| \\
= \frac{\xi}{2} + \frac{\xi}{2} \\
= \xi$$

Therefore, | L1-L2/< E.

Since |L1-L2/ >0 and |L1-L2/< & for every positive E, by HW 1, We must have that |L1-L2 = 0. So, L1-L2=0. Thus, Li=Lz.

4 Let f: D > R where a is a limit point of D. Suppose that lim f(x) = L where L = 0. We want to find 6>0 where if XED and Oclx-ales, then If(x) 170 Set $\varepsilon = \frac{|L|}{2} > 0$ \oplus $\left[\varepsilon > 0 \text{ since } L \neq 0 \right]$ Since lim f(x) = L there exists &>0 where if x ∈ D and o < 1x-a | < 8, then |f(x)-L|<\frac{|L|}{2} \epsilon \E Thus, if x ∈ D and o < 1x-a < 8, then $|L| = |L - f(x) + f(x)| \le |L - f(x)| + |f(x)|$ = |f(x) - L| + |f(x)|< 111 + (x) Thus, if xED and 0<1x-al<8, then 111< 11+1f(x)) Thus, if $x \in D$ and $0 < |x-\alpha| < \delta$, then | L| < |f(x)| Thus, if x eD and o< 1x-a < 8, then 0 < |f(x)|. $\Rightarrow because <math>0 < \frac{|L|}{2}$

Let f: D -) IR where a is a limit point of D and $\lim_{x\to a} f(x) = L$.

Then, since kin f(x)=L there exists 870 where if xED and oclx-al<8

then If(x)-L1<1.

So, if XED and Oclx-alc8, then

|f(x)|=|f(x)-L+L|

< 1+161

Then if XED and oclx-al<8

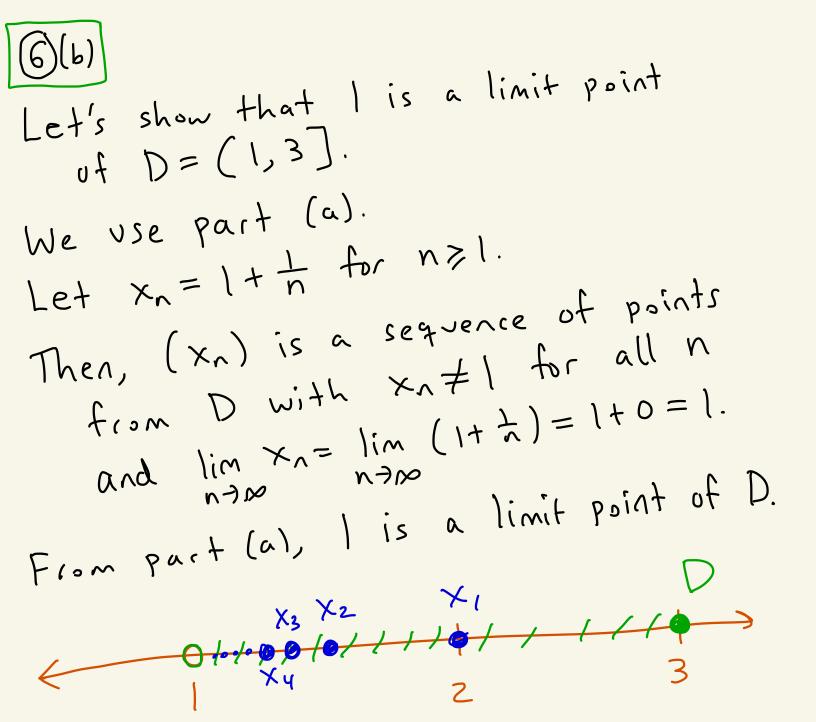
we get If(x)/< M

(a) (b) Suppose that a is a limit point of D. Then for every \$70 there exists Then for every \$0< [x-a] < 8. XED with \$0< [x-a] < 8. Means: x ≠ a and [x-a] < 8.
Set $S_n = \frac{1}{n}$ for $n = 1, 2, 3, 4,$ Then, for every natural number n there exists $x_n \in D$ with $x_n \neq a$ $exists$ $x_n \in D$ with $x_n \neq a$ and $ x_n - a < \frac{1}{n}$ PICTURE OF $n = 1, 2, 3$
We have a sequence (x_n) with $x_n \neq a$ and $x_n \in D$. each $x_n \neq a$ and $x_n \in D$. Let's show that $x_n \rightarrow a$. Let $\xi > 0$. Pick N70 so that $N < \xi$.

Then, if $n \geq N$ we get that $|x_n - \alpha| < \frac{1}{n} \leq \frac{1}{N} < \epsilon$.

Thus, $x_n \rightarrow \alpha$.

(F) Suppose that a ER and there exists a sequence (xn) where for every n we have $x_n \neq a$ and $x_n \in D$. Further assume xn -> a Let's show this implies that a is a limit point of D. Since x, - a there exists an Let 8>0. integer N70 where if n2N then 1xn-a1<5. In particular 1xN-al< S. Thus, given 870 we can find XNED with XN = a so that 0< (xn-a)< 8. Thus, a is a limit point of D.



Let
$$D = (-1,1) \cup \{2\}$$
.
We want to show that 2 is

not a limit point of D .

Let $S = \frac{1}{2}$.

Define $S = \frac{1}{2}$ and $S = \frac{1}{2}$

There does not exist $x \in D$ With $0 < |x-z| < \frac{1}{2}$.

We would need:

XeD and $x \neq z$ and $|x-z| < \frac{1}{2}$ or: $x \in D$ and $x \neq z$ and $\frac{3}{2} < x < \frac{5}{2}$ Thus, $z \in D$ and $z \in D$